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We study the effects of rapid periodic and stochastic modulations of parameters in systems described by the
complex parametric Ginzburg-Landau equation. Amplitude equations, which govern the dynamics of the field
averaged over the rapid modulations, are derived. For temporal modulations of the linear detuning the thresh-
old for the transition from Ising to Bloch walls is shifted depending on the strength of the perturbation. In
contrast to this, rapid perturbations of the linear gain lead only to a decrease of the amplitude of both wall types
leaving the bifurcation point of the Ising-Bloch transition unchanged. Stochastic perturbations of the detuning
lead to a Brownian motion of the Bloch wall beyond bifurcation where the velocity is given analytically. All
theoretical predictions are confirmed by numerical simulations of the full stochastic Ginzburg-Landau
equation.
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I. INTRODUCTION

The influence of noise on the evolution of spatially ex-
tended systems described by the Ginzburg-Landau equation
attracts a great deal of attention because of their fundamental
significance and relevance to many real physical systems.
Many investigations have been devoted to symmetry break-
ing transitions caused by additive and multiplicative noise.
The periodic or random modulation of the gain parameter,
which may originate from, e.g., the variation of a voltage
applied to a liquid crystal, is one typical example. The de-
pendence of the threshold of the symmetry breaking transi-
tion on the noise strength, the change of the character of
bifurcation, etc., have been investigated by many authors
f1–5g. Methods of analysis of stochastic partial differential
equations were used for such theoretical investigations; in
particular the analysis of stochastic field moments has been
applied. In a recent work by Staliunasf6g the influence of
spatial randomness on dissipativescavityd solitons has been
investigated. It was shown that the randomness induced by
the roughness of the mirrors can stabilize dissipative spatial
solitons in nonlinear optical resonators due to the additional
damping originated by noise.

In this paper we study the influence of rapidly varying
periodic and stochastic perturbations in transversally ex-
tended systems near a so-called chirality breaking bifurca-
tion. This type of bifurcation occurs for example in systems
that can be modeled by the parametric complex Ginzburg-
LandausGLd equation:

Ft = mF* + sg + iddF − uFu2F + Fxx, s1d

wherem is the parametric forcing parameter with frequency
twice that of a Hopf oscillation,g is the linear gain, andd
denotes the linear detuningf7g. The parametric complex GL
equation describes, for example, a degenerate optical para-
metric oscillator with a frequency limiter acting near anti-
resonancef8g and the parametric instability in a vertically
vibrated layer of granular materialsf9g. The parametric forc-
ing breaks the phase invariancesF→F expiwd of the usual
Ginzburg-Landau equationsf10,11g and this gauge symmetry
is replaced by the discrete symmetryF→−F. Therefore any
nontrivial solution of Eq.s1d has usually a counterpart with a
p phase shift compared to the original one. For vanishing
detuningsd=0d an energy functionalE of Eq. s1d existsf7g,
which allows one to reformulate the parametric GL equation
in a gradient formFt=−dE/dF* ; however, fordÞ0 Eq. s1d
describes a nongradient system. Domain walls are one
prominent example of nonlinear transverse structures of Eq.
s1d. They can be considered as the transverse connection of
two nontrivial plane waves, which are related by the above-
mentioned, discrete phase symmetryF→−F. The parametric
GL equation supports two different kinds of domain walls,
namely, the so-called Ising and Bloch walls. In the gradient
limit sd=0d both types of domain walls can be obtained ana-
lytically f7g. The Ising wall has the form

ReFI = ± Îm + g tanhhfsm + gd/2g1/2xj, Im FI = 0, s2d

whereas the Bloch wall solution is given by
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ReFB = ± Îm + g tanhfÎ2mxg, ImFB =
Îg − 3m

coshsÎ2mxd
.

s3d

Bloch walls emanate from the Ising wall at the bifurcation
point gc=m /3. For g.m /3 the Ising wall destabilizes and
stable Bloch walls emerge, i.e., an Ising-Bloch transition oc-
curs. For a gradient system both the Ising and the Bloch
walls are at rest, because they obey the parity symmetry
FI/Bsxd=−FI/Bs−xd. In the nongradient casesdÞ0d, Bloch
walls exhibit a spontaneous motion, because now the parity
symmetry is brokenf7g. The motion is induced by an eigen-
vector, which exactly passes the translational mode of the
system at the bifurcation pointf11,12g.

In this paper we will consider the above parametric GL
equations1d with coefficients variable in time. A laser cavity
with the injection of two coherent fields of equal amplitudes
and different frequencies is a typical example for such a
system. Close to the lasing threshold it can be described by
the complex Ginzburg-Landau equation

At = fs + idsvtdgA + s1 + iadAxx − s1 + ibduAu2A + BsVtd,

s4d

whereBstd denotes the external forcing. Among such laser
systems a fiber ring laserf14g with filtering exhibits a rather
interesting example, where the parameters can be tuned in a
wide range in the above equation. In this caseA is the field
amplitude,t is propotional to the number of circulations of
the light in the cavity, andx denotes the normalized time.
s ,a, and b represent the parameters describing the small
signal gain, the group velocity dispersion, and the refractive
nonlinearity, respectively. The cavity detuningdsvtd depends
on the variablet, which, for example, can be realized electro-
optically. The parameters originating from filteringsreal
prefactor ofAxxd and from gain saturationsreal prefactor of
uAu2Ad are normalized to unity. By changing the main optical
frequencies the strength of dispersion of the system can be
varied in a wide range. In particular, for optical frequencies
close to the zero dispersion point of the fiber the value ofa
vanishes and only an effective diffusion due to filtering re-
mainsf15g. Similarly, the relation between refractive and ab-
sorptive nonlinearities can be adjusted by choice of suitable
gain media. For example, in the case of a gain medium with
a small saturation power and a small Henry factor, such as a
semiconductor quantum dot amplifier, gain saturation is the
dominant nonlinear effect. Thus, in what follows we assume
that the coefficientsa andb are small and can be neglected.

Furthermore, let us consider an external forcing ofBstd
=B cossVtd where its amplitude is slowly varying in time.
Assuming 1!v!V ssee, e.g.,f13gd the field amplitude can
be represented in the form of converging seriesA=F+eA1
+¯ wheree=1/V holds.F is a slowly varying function on
the scale of 1/e and Ai are rapidly varying functions. After
averaging over the frequencyV we arrive at the parametric
GL equations1d with m=B2/ s2V2d andg=s−2m.

In order to analytically study the influence of temporal
parameter modulations one needs to average the parametric
GL equations1d over these oscillations or fluctuations. A

similar problem has been previously investigated for the
nonlinear SchrödingersNLSd equation with rapid modula-
tions of its parameters. An optical fiber transmission line
with periodic lumped amplifiers is a spectacular example of
such a system. The corresponding NLS equation exhibits a
rapidly oscillating, strong amplification term. The averaging
of the field over fast oscillations leads to the renormalized
NLS equation. The corresponding description is referred to
as the guiding-center soliton conceptf16g. Analogous con-
siderations for the two-dimensionals2Dd NLS equation with
a rapidly spatially varying potential result in a renormalized
2D NLS equation too. It represents one option for arresting
beam collapsef17g. This stabilization reminds one of the
Kapitza stabilization of the inverted pendulum with rapid
oscillations of its pivot pointf18g.

It is worth noting that the common theoretical approach to
obtain the threshold value of a symmetry breaking transition
in systems with multiplicative noisese.g., the electrically
driven Fréederickz transition in liquid crystalsf4gd, which is
based on the calculation of the first few moments of the
linearized equation, leads to the incorrect result for our prob-
lem. The reason is the overestimation of events with large
deviations, which are actually suppressed by the nonlinear
term in the full equations1d. In order to get the correct criti-
cal point of the bifurcation from the first moment of the
linearized stochastic equation a method has to be applied that
excludes contributions from the rare large perturbationsf2g.
On the other hand one can expect that a consistent account-
ing for the nonlinearity in the equation for the first moment
will as well lead to the correct bifurcation threshold. This
equation will be the basis for the analysis of the Ising-Bloch
bifurcation under random modulations. For rapid periodic
variations of parameters we will derive the averaged GL
equation by applying a multiscale technique, similar to the
one used inf17,19g.

The paper is structured as follows. In Sec. II we present
the derivation of the averaged GL equation for rapidly oscil-
lating detuning and linear gain. This equation is applied to
analyze the Ising-Bloch transition. Section III is devoted to
stochastic parameter fluctuations with respect to Ising-Bloch
transitions. Furthermore, the diffusion coefficient for the
Brownian motion of Bloch walls is derived. All analytical
results are double checked by the numerical simulations of
the full parametric GL equation with varying parameters. For
the numerical simulations a conventional beam propagation
technique is applied using either a fast Fourier transform or a
Crank-Nicholson method. The stochastic fluctuations of pa-
rameters are modeled by means of a standard random num-
ber generator providing a uniform probability distribution,
which is transformed into a Gaussian distribution using the
Box-Muller method.

II. RAPID PERIODIC MODULATIONS

In order to derive an averaged amplitude equation for rap-
idly oscillating parameters of Eq.s1d different schemes can
be applied, e.g., a multiscale methodf19g or a Fourier trans-
form techniquef17g. We use the method developed inf17g
for the NLS equation with rapidly varying coefficients.
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Let us first consider the case of a rapid and harmonic
oscillating linear detuningd=dst /ed=d0+d1sinsVtd, e−1

,V@1. We are looking for solutions of Eq.s1d of the fol-
lowing form:

Fsx,td = F̄ + Asx,tdsinsVtd + Bsx,tdcossVtd + Csx,tdsins2Vtd

+ Dsx,tdcoss2Vtd + ¯ , s5d

where F̄ ,A,B,C,D are slowly varying amplitudes in time
depending on the transverse coordinate. After substituting
this Fourier expansion into Eq.s1d we obtain a system of

equations for the functionsF̄ ,A,B,C,D:

F̄t = mF̄* + sg + id0dF̄ + i
d1A

2
−

1

4
s2A2F̄* + 4uAu2F̄ + 2B2F̄*

+ 4uBu2F̄ + 4uF̄u2F̄ + ¯ d + F̄xx,

At − VB = mA* + sg + id0dA + id1F̄ −
id1D

2

−
1

4
s8AuF̄u2 + 4A*F̄2 + ¯ d + Axx,

Bt + AV = mB* + sg + id0dB +
id1C

2

−
1

4
s8BuF̄u2 + 4B*F̄2 + ¯ d + Bxx,

Ct − 2VD = mC* + sg + id0dC +
id1B

2

−
1

4
s8CuF̄u2 + 4C*F̄2 + ¯ d + Cxx,

Dt + 2VC = mD* + sg + id0dD −
id1A

2

−
1

4
s2B2F̄* + 4uBu2F̄ + ¯ d + Dxx. s6d

Inspecting these equations one finds the following first-
order dependencies:

B < −
id1

V
F̄, D < −

id1B

4V
, A ,

1

V2, C ,
1

V3 , s7d

which lead to an ansatz of the form

A =
a1

V2 +
a2

V4, B =
b1

V
+

b2

V3, C =
c1

V3 +
c2

V5 ,

D =
d1

V2 +
d2

V4 .

Using this ansatz the unknown quantitiesa,b,c,d can be
determined as

a1 = id1F̄t + imd1F̄
* − igd1F̄ + d0d1F̄ + id1uF̄u2F̄ − id1F̄xx,

b1 = − id1F̄, c1 = − id1A/4, d1 = − d1
2F̄/4. s8d

Finally, Eqs.s5d–s7d result in an amplitude equation for

the redefined, averaged fieldF̃+s1+e2/2d1/2F̄ of the form

F̃t = m
1 − e2/2

1 + e2/2
F̃* + sg + id0dF̃ − uF̃u2F̃ + F̃xx

< ms1 − e2dF̃* + sg + id0dF̃ − uF̃u2F̃ + F̃xx, s9d

wheree2=d1
2/V2.

Equations9d shows that a rapidly oscillating detuning ef-
fectively decreases the parametric forcing of the averaged
field amplitude. For rather large oscillating perturbations the
parametric forcing may even vanish, causing a recovery of
the above-mentioned continuous phase symmetry. Moreover,
for a purely oscillating detuningd0=0, d1Þ0 the nongradi-
ent GL Eq.s1d transforms into an averaged gradient equa-
tion. Thus, in this case there is no averaged net velocity of
Bloch walls. Figure 1sbd shows the evolution of an Ising wall
for such a situation beyond the Ising-Bloch bifurcation point.
The Ising wall destabilizes and transforms into a Bloch wall
without net velocity. In Fig. 1sad we compare the threshold of
the Ising-Bloch bifurcation obtained by the averaged model

FIG. 1. Transition of an Ising to a Bloch wall for rapid periodi-
cally detuningd=d0+d1 sinsVtd. sad Threshold of the Ising-Bloch
bifurcation as a function of the strength of the periodic perturbation
e=d1/V, lines; averaged Eq.s9d, dots; numerical simulation of Eq.
s1d; parameters,g=1, d0=0,0.3,V=10. sbd Evolution of the order
parameterF for m=0.4,g=1, d0=0, d1=7, V=10; initial condition,
Ising wall.
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fEq. s9dg with the results of numerical simulations of the
basic Eq.s1d. A very good agreement is obtained even for
rather large perturbationse.

Now, let us briefly discuss the influence of rapid oscilla-
tory perturbations of the linear gaing=g0+g1sinsVtd on the
Ising-Bloch transition. Similarly to the above procedure, an
averaged GL equation

F̄t = mF̄* + sg0 + iddF̄ − s1 + 2e2duF̄u2F̄ + F̄xx s10d

can be obtained. Here, oscillatory perturbations lead only to
a decrease of the amplitude of both types of walls leaving the
bifurcation point of the Ising-Bloch transition unchanged.

It should be noted that the model of Eq.s1d is a nongra-
dient system, the dynamics of which can be analyzed by
means of other approaches, e.g., using the free energy or
Lyapunov potentialf20g. The comparison of such methods
with the approach of the averaged GL equation requires
separate considerations.

III. RANDOM MODULATIONS

In this section we study the influence of random param-
eter modulations on the Ising-Bloch transition. We restrict
ourselves to perturbations of the detuning parameterd=dstd,
which exhibit the property of white noisekdstddst8dl
=2s2dDst− t8d, kdstdl=0. dDstd is the Dirac delta function and
k¯l denotes the averaging procedure over all realizations of
the random process.

A. Dynamics of the first moment and transition threshold

Here, the equation for the first moment of the order pa-
rameterF is derived. By means of this averaged amplitude
equation we study the influence of noise on the Ising-Bloch
transition. First, we rewrite Eq.s1d in the form of two equa-
tions for the amplitudea and the phasef of the complex
order parameterF=aeif:

at = fm coss2fd + g − fx
2ga + axx − a3, s11d

ft = dstd − m sins2fd + fxx + 2fxax/a. s12d

The Ising solutionfEq. s2dg is purely real, i.e., the phase
vanishes,f=0. Therefore one may expect that under the
influence of the time dependent perturbationdstd the phase of
the perturbed Ising wall solution depends only on the time
variable too. In this case the equation for the phasef has the
simple form

ft = dstd − m sins2fd.

Small perturbations indstd swe neglect large fluctuationsd
cause small values of the phase. Therefore we can approxi-
mately reduce Eq.s12d to a linear one,

ft = dstd − 2mf, s13d

which has the following solution:

fstd = e−2mtE
0

t

e2mt8dst8ddt8. s14d

Looking for the solution of Eq.s11d in the form a= ā+a1,
wherekal= ā, ka1l=0, we arrive at the system of equations

āt = smkcos 2fl + gdā + mka1cos 2fl + āxx − ā3 − 3āka1
2l,

s15d

a1t = mscos 2f − kcos 2fldā + msa1cos 2f − ka1cos 2fld

+ ga1 + a1xx − a1
3 − 3ā2a1 + 3āsa1

2 − ka1
2ld. s16d

As can be inferred from Eq.s16d the variablea1 is at least of
second order. Keeping only terms up to second order, we
finally get the closed equation for the averaged amplitude,

āt = fms1 − 2kf2ld + ggā + āxx − ā3. s17d

Using Eq.s14d we find that

kf2l =
s2

2m
s1 − e−4mtd → s2

2m
s18d

holds. Thus the equation for the averaged amplitude coin-
cides with the unperturbed GL equation after replacingm by
ms1−2kf2ld<m−s2. In our case ofkdl=0 the averaged GL
equation is of gradient type whereas the original, stochastic
GL equation is nongradient. Similar to the previous section
the parametric forcing decreases for increasing strength of
the random perturbation of the detuning. It can even vanish,
producing an averaged GL equation without parametric
forcing. If we apply the considerations in this section
to harmonic perturbationdstd=d1sinsVtd, we get f=sd1/
Vdfexps−2mtd−cossVtdg→−sd1/VdcossVtd and thus

kf2l =K d1
2

2V2L s19d

holds. Inserting this formula into above averaged Eq.s17d
exactly the same resultfEq. s9dg as in the previous section is
obtained. Even the change of the amplitude coincides if the
approximation kFl=ka expsifdl< ās1−kf2ld is used. The
reason for the decrease of the parametric forcing originates
from the fact that the perturbed Ising wall exhibits a non-
trivial phase dependence. Of course, this nonzero phase in-
fluences the phase sensitive term in the parametric GL equa-
tion as can be observed, e.g., in Eq.s11d. Thus, the effective
parametric forcing becomes time dependent and it decreases
after averaging.

With regard to the threshold of the Ising-Bloch bifurcation
the results of numerical simulations of the full stochastic GL
equations1d coincide very well with the those of the aver-
aged modelfEq. s17dg fsee Fig. 2sadg. A typical evolution of
the order parameterF with rather strongd noise is shown in
Figs. 2sbd and 2scd. An Ising wall destabilizes and transforms
into a Bloch wall. Even though such a Bloch wall exhibits no
averaged net velocity there is a kind of Brownian motion,
which will be studied in the next subsection.
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Let us briefly discuss the role of strong fluctuations. As
shown in the Appendix, the second moment for the phase is
described by the expression

kf2stdl <
s2

2m
s1 − e−4mt + 4mtPcd, s20d

which coincides with Eq.s18d for 4mt! Pc
−1. Note, for an

initial time interval 4mt!1 and not too small values ofPc
we have the diffusion law for the phasekf2l=Dt with the
new diffusion coefficient 2s2s1+Pcd instead of 2s2 for ne-
glecting Pc. This will explain the numerical observations of
increasing diffusion coefficients in the case of large fluctua-
tions ssee the numerical results for the diffusion of the do-
main wall in the next sectiond.

Furthermore, the results of our investigations can be eas-
ily extended to a more involved noise modelesx,td with the
properties kesx,tdl=0, kesx,tdesy,t8dl=Dsx−y, leddst− t8d,
wherele is the correlation length. In this case our results are
approximately valid after replacings2 by Ds0d. An analo-

gous noise model is considered by Becker and Kramerf2g
for the GL equation, where the influence of multiplicative
noise on the bifurcation process has been studied. Within
such a model one still has Markovian processes for the noise.
Therefore, the theory of Markov proceses can be applied.
The case of white noise in space and time is beyond the
applicability of our theory and has to be considered sepa-
rately.

B. Brownian motion of the Bloch wall

For temporal fluctuations ofd the Bloch wall will undergo
a random motion. In order to analyze the character of this
motion we derive the equation for the velocity of the Bloch
wall.

For d,e!1 we can apply the singular perturbation
theory. For the order parameterF the following ansatz is
used:

F = F0szd + eu1sz,td + e2u2sz,td + ¯ , s21d

where z=x−x0std holds andF0 is the Bloch solution in a
comoving frame with velocityvstd. The actual positionx0 of
the Bloch wall is given byx0=e0

t vst1ddt1. The velocityvstd is
assumed to obey the relation

vstd = ev1 + e2v2 + ¯ . s22d

After substituting all these expansions into Eq.s1d a system
of equations forF0,u1,u2 is obtained. Excluding the secular
terms in the first order we find the following expression for
the first-order velocityv1:

v1 = dstd
E

−`

`

dzfY0sydX0zsyd − X0sydY0zsydg

E
−`

`

dzfX0z
2 syd + Y0z

2 sydg
, s23d

wherey=Î2mz andX0,Y0 denote the real and the imaginary
part of the unperturbed Bloch wall. If we take into account
the shape of the Bloch wallfEq. s3dg a simple relation for the
position of the center of such a randomly perturbed domain
wall can be deduced

x0 = − AE
0

t

dst1ddt1, A =
3pÎg − 3mÎm + g

2Î2ms3g − md
. s24d

For a constant detuningd, this equation coincides with that
found in f7g. For a random detuning the mean square of the
Bloch wall displacementkx0

2l is given by

kx0
2l = Dt, D = 2A2s2. s25d

The mean square of the displacement of the domain wall
increases linearly in time. Thus a Brownian motion of the
domain wall occurs. The diffusion coefficient is proportional
to the so-called chiralityx2, wherex=Îg−3m. Therefore the
diffusion of the domain walls is slower close to the threshold
of the Ising-Bloch transition. For small values ofm the rela-
tion D,1/m holds, i.e., in this case the diffusion is propor-
tional to the square of the domain wall width.

FIG. 2. Transition of an Ising to a Bloch wall for randomly
varying detuningd=d1std, kd1stdd1st8dl=2s2dDst− t8d. sad Threshold
of the Ising-Bloch bifurcation as a function of the variances of the
random perturbation, line; averaged Eq.s17d, dots; numerical simu-
lation by means of Eq.s1d; parameterg=1. sbd Surface plot of the
evolution of the order parameterF for m=0.35,g=1, s=0.4; initial
condition Ising wall.scd Contour plot of the evolution of the order
parameterF; same parameters as insbd.
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Figure 3 shows the diffusion coefficient of Bloch walls as
a function of the variance of the stochasticd variations. The
results of the numerical simulations of the full stochastic
Ginzburg-Landau equation reasonably coincide with the
above theory for low values of the noise. For larger noise
strengths there is only a qualitative agreementssee Appen-
dixd. Probably this is due to the generation of new states by
the strong noise. A similar threshold value for the noise in-
tensity has been observed in the sine-Gordon equation,
where the generation of small amplitude breathers has been
observedf21–23g.

IV. CONCLUSION

In conclusion, we have studied the Ising-Bloch transition
in systems described by the parametric Ginzburg-Landau
equation for periodically and randomly varying parameters
in time. For rapidly modulated detuning and linear gain, av-
eraged parametric GL equations have been derived. For tem-
poral modulations of the linear detuning the threshold of the
Ising-Bloch bifurcation is shifted in dependence on the
strength of the perturbation. Temporal perturbations of de-
tuning may even cause a change of the type of the nonlinear
system, i.e., initially nongradient systems may effectively be-
have like gradient ones. On the contrary, rapid periodic per-
turbations of the linear gain do not change the critical point
of the Ising-Bloch transition. This type of perturbation leads
only to a decrease of the domain wall amplitudes.

For a white noise modulation of the detuning we studied
the behavior of the first moment. In this case an averaged
amplitude equation has been derived. Using this equation the
shift of the bifurcation point was analyzed. Additionally, the
connection between a periodically and randomly varying de-
tuning parameter was examined. For randomly changing de-
tunings Bloch walls perform a Brownian motion. The diffu-
sion coefficient of this Brownian motion is derived for low
amplitude noise. It is shown that the diffusion coefficient is
proportional to the square of the chirality parameter. Thus,
slow diffusion can be observed close to the critical point of
the Ising-Bloch transition. All analytical predictions have

been confirmed by numerical simulations of the parametric
GL equation with periodic and random coefficients.

APPENDIX

In order to treat Eqs.s11d and s12d analytically we apply
the two following assumptions, where the validity was
checked numerically.

sid For a random, time dependent detuning parameter the
phase of the perturbed Ising wall depends on the time vari-
able t only, or at least it is a slow function of the transverse
variablex. Therefore, the termsfx andfxx in Eq. s12d can be
omitted. The reduced equation exhibits the form

ft = dstd − m sins2fd. sA1d

sii d For low intensity noise the phase is proportional to
dstd and has a small magnitude. Thus, Eq.sA1d can be lin-
earized. This assumption corresponds to the neglect of large
noise fluctuations.

The influence of large fluctuations can be estimated in the
following way. Let us define the time periodsDtn= tn+− tn− as
such intervalssaround random momentstn,tn−ø tnø tn+, n
=1,2,3,… ,Nd in which dstnd.dc occurs:dc is some critical
value of the noise amplitude that is considered to be large
se.g.,dcùmd. The value of the periodDtn depends on a cor-
relation time and it tends to zero for white noise. For such
time intervals Eq.sA1d approximately reduces toftstnd
=dstnd leading to the following expression:

kf2stn+dl < 2s2Dtn. sA2d

Thus, the value of the second moment of the phase can be
written asfsee Eq.s18dg

kf2stdl <
s2

2m
S1 − e−4mt + 4mo

n=1

N

DtnD, tN ø t. sA3d

The third term in the above parentheses describes the contri-
bution of the large fluctuations and it can be rewritten as
Dkf2stdl<2s2tPL, wherePL=on=1

N dtn/ t. The parameterPL

defines the relative time interval of large fluctuations, and for
a large enough period of the timet it becomes a constant. In
order to estimatePL we assume a Gaussian distribution ofd
according to

Psdd =
1

Î2pd0

expS−
d2

2d0
2D . sA4d

In this case the probability ford.dc is given by

Pc =E
dc

`

Psddd =
1

Îp
E

dc/Î2d0

`

e−x2
dx. sA5d

For example, ford0=0.07 anddc=0.3 we getPc<10−5, and
for dc=0.4 the valuePc<10−8 holds approximately. In the
case of ergodic processes the relationPL=Pc results. Finally,
the second moment of the phase reads as

kf2stdl <
s2

2m
s1 − e−4mt + 4mtPcd, sA6d

which coincides with Eq.s18d for 4mt! Pc
−1.

FIG. 3. Diffusion coefficient of the Brownian motion of a Bloch
wall as a function of the variance of the randomly varying detuning
d=d1std, kd1stdd1st8dl=2s2dDst− t8d. Solid line, theory; points, nu-
merical simulation by means of Eq.s1d; parametersg=1, m=0.25.

MICHAELIS et al. PHYSICAL REVIEW E 71, 056205s2005d

056205-6



f1g J. Moehlis and E. Knobloch, Phys. Rev. E54, 5161s1996d.
f2g A. Becker and L. Kramer, Phys. Rev. Lett.73 955 s1994d.
f3g J. Röder, H. Röder, and L. Kramer, Phys. Rev. E55, 7068

s1997d.
f4g I. Rehberget al., Phys. Rev. Lett.67, 596 s1991d.
f5g F. Drolet and J. Viñals, Phys. Rev. E56, 2649s1997d.
f6g K. Staliunas, Phys. Rev. A68, 013801s2003d.
f7g P. Coullet, and J. Lega, Phys. Rev. Lett.65, 1352s1990d.
f8g S. Longhi, Opt. Lett.21, 860 s1996d.
f9g L. S. Tsimring and I. Aranson, Phys. Rev. Lett.79, 213,

s1997d.
f10g N. N. Akhmediev and A. Ankiewicz,Nonlinear Pulses and

BeamssChapman and Hall, London, 1997d.
f11g D. V. Skryabin, A. Yulin, D. Michaelis, W. J. Firth, G.-L.

Oppo, U. Peschel, and F. Lederer, Phys. Rev. E64, 056618
s2001d.

f12g D. Michaelis, U. Peschel, D. V. Skryabin, and W. J. Firth,
Phys. Rev. E63, 066602s2001d.

f13g G. Valcarel and K. Staliunas, Phys. Rev. E67, 026604s2003d.

f14g M. Haelterman, S. Trillo, and S. Wabnitz, J. Opt. Soc. Am. B
11, 446 s1994d.

f15g Z. Bakonyi, D. Michaelis, U. Peschel, G. Onishchukov, and F.
Lederer, J. Opt. Soc. Am. B19, 487 s2002d.

f16g A. Hasegawa and Y. Kodama, Phys. Rev. Lett.66, 161s1991d.
f17g Yu. S. Kivshar and S. K. Turitsyn, Phys. Rev. E49, R2536

s1994d.
f18g L. D. Landau and E. M. Lifshitz,MechanicssPergamon, Ox-

ford, 1975d.
f19g T. Yang and W. L. Kath, Opt. Lett.22, 985 s1997d.
f20g F. Barra, O. Descalzi, and E. Tirapegui, Phys. Lett. A221, 193

s1996d.
f21g D. J. Kaup, Phys. Rev. B27, 6787s1983d.
f22g M. Salerno, E. Joergensen, and M. R. Samuelsen, Phys. Rev. B

30, 2635s1984d.
f23g F. Kh. Abdullaev, M. R. Djumaev, and E. N. Tsoi, Tech. Phys.

45, 566 s2000d.

ISING-BLOCH TRANSITION FOR THE PARAMETRIC… PHYSICAL REVIEW E 71, 056205s2005d

056205-7


