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Ising-Bloch transition for the parametric Ginzburg-Landau equation
with rapidly varying perturbations
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We study the effects of rapid periodic and stochastic modulations of parameters in systems described by the
complex parametric Ginzburg-Landau equation. Amplitude equations, which govern the dynamics of the field
averaged over the rapid modulations, are derived. For temporal modulations of the linear detuning the thresh-
old for the transition from Ising to Bloch walls is shifted depending on the strength of the perturbation. In
contrast to this, rapid perturbations of the linear gain lead only to a decrease of the amplitude of both wall types
leaving the bifurcation point of the Ising-Bloch transition unchanged. Stochastic perturbations of the detuning
lead to a Brownian motion of the Bloch wall beyond bifurcation where the velocity is given analytically. All
theoretical predictions are confirmed by numerical simulations of the full stochastic Ginzburg-Landau
equation.
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. INTRODUCTION Fo=uF" + (y+idF — |[F|?F + Fyy, (1)

The influence of noise on the evolution of spatially ex-whereu is the parametric forcing parameter with frequency
tended systems described by the Ginzburg-Landau equatidwice that of a Hopf oscillationy is the linear gain, and
attracts a great deal of attention because of their fundamentgenotes the linear detunirig]. The parametric complex GL
significance and relevance to many real physical system§duation describes, for example, a degenerate optical para-

Many investigations have been devoted to symmetry breakNetric oscillator with a frequen_cy_ Iimite_r. ac.ting near anti-
ing transitions caused by additive and multiplicative noise_resonance{B] and the parametric instability in a vertically

The periodic or random modulation of the gain parameteryibrated layer of granular materigl§]. The parametric forc-

which may originate from, e.g., the variation of a voltageggJ bgeaksLthz phase ir!var;gnl(EaI;eﬁpkp) of the usual
applied to a liquid crystal, is one typical example. The de-. inzburg-Landau equatiofi$0,11] and this gauge symmetry

: is replaced by the discrete symmefy- —F. Therefore any
pendence of the threshold of the symmetry breaking transi ontrivial solution of Eq(1) has usually a counterpart with a

tion on the noise strength, the change of the character ol

bifurcation, etc., have been investigated by many authorg phase shift compared to the original one. For vanishing
' N . : . . .~ detuning(6=0) an energy functiondt of Eq. (1) exists[7],
[1-5]. Methods of analysis of stochastic partial differential uning( ) gy functi a. (1) exists[ 7]

. . ! o .which allows one to reformulate the parametric GL equation
equations were used for such theoretical investigations; th a gradient formF,=—8E/ 8F"; however, fors+0 Eq. (1)

particular the analysis of stochastic field moments has beefogcribes a nongradient system. Domain walls are one

applied. In a recent work by Staliung6] the influence of  ,ominent example of nonlinear transverse structures of Eq.

spatial randomness on dissipatii@avity) solitons has been (1) They can be considered as the transverse connection of

inVeStigated. It was shown that the randomness induced W\/O nontrivial p|ane waves, which are related by the above-

the roughness of the mirrors can stabilize dissipative spatighentioned, discrete phase symmefry —F. The parametric

solitons in nonlinear optical resonators due to the additionaGL equation supports two different kinds of domain walls,

damping originated by noise. namely, the so-called Ising and Bloch walls. In the gradient
In this paper we study the influence of rapidly varying limit (6=0) both types of domain walls can be obtained ana-

periodic and stochastic perturbations in transversally exiytically [7]. The Ising wall has the form

tended systems near a so-called chirality breaking bifurca- o

tion. This type of bifurcation occurs for example in systems ReF, = £ Vu+ ytanH[(u+ y)/2]¥>}, ImF,=0, (2)

that can be modeled by the parametric complex Ginzburg-

Landau(GL) equation: whereas the Bloch wall solution is given by
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Vy-3u similar problem has been previously investigated for the
nonlinear Schrédinge(NLS) equation with rapid modula-
tions of its parameters. An optical fiber transmission line

(3)  with periodic lumped amplifiers is a spectacular example of

Bloch walls emanate from the Ising wall at the bifurcation suc_h a sys_tem. The correspon_d_mg_ NLS equation exh|b_|ts a

point y,= /3. For y> /3 the Ising wall destabilizes and rapidly oscillating, strong amplification term. The averaging

Yo~ H - YoR of the field over fast oscillations leads to the renormalized

stable Bloch walls emerge, i.e., an Ising-Bloch transition oc-

curs. For a gradient system both the Ising and the Blocr'1\“‘s equation. The corresponding description is referred to

walls are at rest, because they obey the parity s mmetraS the guiding-center soliton concefi$]. Analogous con-
Fa(X)=—F 5(~X) ,In the non rgdientycaseﬁg& O)yBI)(;ch ¥iderations for the two-dimension@D) NLS equation with
gy B 9 : a rapidly spatially varying potential result in a renormalized

walls e>t<h|b|t§ SEon;an_le_:rc])us mt(?tlon, _bedcausdebnow th_e pa”t%D NLS equation too. It represents one option for arresting
symmetry is broketi7]. The motion is induced by an eigen- beam collapsd17]. This stabilization reminds one of the

vector, which exactly_passgs the translational mode of th‘f(apitza stabilization of the inverted pendulum with rapid
system at the bifurcation poiiii1,13. oscillations of its pivot poin{18].

In this paper we will consider the above parametric GL It is worth noting that the common theoretical approach to

equation(l_) Wi.th coefficients variab_le in time. A laser c_avity obtain the threshold value of a symmetry breaking transition
with the injection of two coherent fields of equal amplitudes; | systems with multiplicative noisée.g., the electrically

and different frequencies is a typical example for such &y, Fréederickz transition in liquid crystdk]), which is

system. Close to the lasing threshold it can be described b@fased on the calculation of the first few moments of the
the complex Ginzburg-Landau equation

linearized equation, leads to the incorrect result for our prob-
A=[o+idwt) A+ (1 +ia)Ay— (1+iB)|APA+B(Qt), lem. The reason is the overestimation of events with large
4) deviations, which are actually suppressed by the nonlinear
term in the full equatior{1). In order to get the correct criti-
where B(t) denotes the external forcing. Among such lasercal point of the bifurcation from the first moment of the
systems a fiber ring lasgt4] with filtering exhibits a rather linearized stochastic equation a method has to be applied that
interesting example, where the parameters can be tuned inexcludes contributions from the rare large perturbati@js
wide range in the above equation. In this césis the field  On the other hand one can expect that a consistent account-
amplitude,t is propotional to the number of circulations of ing for the nonlinearity in the equation for the first moment
the light in the cavity, anck denotes the normalized time. Will as well lead to the correct bifurcation threshold. This
o,a, and B8 represent the parameters describing the smalequation will be the basis for the analysis of the Ising-Bloch
signal gain, the group velocity dispersion, and the refractivebifurcation under random modulations. For rapid periodic
nonlinearity, respectively. The cavity detunidgwt) depends variations of parameters we will derive the averaged GL
on the variablg, which, for example, can be realized electro- equation by applying a multiscale technique, similar to the
optically. The parameters originating from filteringeal — one used irf17,19.
prefactor ofA,,) and from gain saturatiofreal prefactor of The paper is structured as follows. In Sec. Il we present
|A?A) are normalized to unity. By changing the main optical the derivation of the averaged GL equation for rapidly oscil-
frequencies the strength of dispersion of the system can Hating detuning and linear gain. This equation is applied to
varied in a wide range. In particular, for optical frequenciesanalyze the Ising-Bloch transition. Section Ill is devoted to
close to the zero dispersion point of the fiber the valuerof Stochastic parameter fluctuations with respect to Ising-Bloch
vanishes and only an effective diffusion due to filtering re-transitions. Furthermore, the diffusion coefficient for the
mains[15]. Similarly, the relation between refractive and ab- Brownian motion of Bloch walls is derived. All analytical
sorptive nonlinearities can be adjusted by choice of suitablgesults are double checked by the numerical simulations of
gain media. For example, in the case of a gain medium wittihe full parametric GL equation with varying parameters. For
a small saturation power and a small Henry factor, such as #e numerical simulations a conventional beam propagation
semiconductor quantum dot amplifier, gain saturation is théechnique is applied using either a fast Fourier transform or a
dominant nonlinear effect. Thus, in what follows we assumeCrank-Nicholson method. The stochastic fluctuations of pa-
that the coefficientsr and 8 are small and can be neglected. rameters are modeled by means of a standard random num-
Furthermore, let us consider an external forcingBof) ber generator providing a uniform probability distribution,
=B coqQt) where its amplitude is slowly varying in time. which is transformed into a Gaussian distribution using the
Assuming k w<( (see, e.g.[13]) the field amplitude can Box-Muller method.
be represented in the form of converging seresF +eA;
+--- wheree=1/(Q) holds.F is a slowly varying function on
the scale of 1¢ and A; are rapidly varying functions. After
averaging over the frequendy we arrive at the parametric In order to derive an averaged amplitude equation for rap-
GL equation(1) with x=B?/(2Q0?) and y=0-2u. idly oscillating parameters of Eq1) different schemes can
In order to analytically study the influence of temporal be applied, e.g., a multiscale meth[d®] or a Fourier trans-
parameter modulations one needs to average the parametf@m technique[17]. We use the method developed [ih7]
GL equation(1) over these oscillations or fluctuations. A for the NLS equation with rapidly varying coefficients.

ReFg= £ Vu+ ytant{v"ﬂx], ImFg=—————.
cosh(\2ux)

II. RAPID PERIODIC MODULATIONS
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ISING-BLOCH TRANSITION FOR THE PARAMETRIC..

Let us first consider the case of a rapid and harmonic
oscillating linear detuningd=4(t/ €)=+ 8;8iN(Qt), €
~>1. We are looking for solutions of Eql) of the fol-
lowing form:

F(x,t) = F+ A(x,1)sin(Qt) + B(x,t)cogQt) + C(x,t)sin(20t)
+D(x,t)cog2Qt) + -+, (5

whereE,A,B,C,D are slowly varying amplitudes in time
depending on the transverse coordinate. After substituting
this Fourier expansion into Eq1) we obtain a system of

equations for the functions,A,B,C,D:
- = .= .0A 1 — — —
Fo= uF +(y+i8)F + |% - S (A + 4AF + 2B%F
+AIBZF + 4[F[2F + ) + Py,

A- OB =pA +(y+|50)A+|51F—#

1, = =
- Z(8A|F|2+4A F2+ )+ A,

\ . i5,C
B, +AQ = uB +(7+|50)B+Tl

1, = =
- Z(SB|F|2+4B F2+ --+) + By,
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FIG. 1. Transition of an Ising to a Bloch wall for rapid periodi-
cally detuningé=&y+ &; sin(Qt). (a) Threshold of the Ising-Bloch
bifurcation as a function of the strength of the periodic perturbation
€=51/Q, lines; averaged Ed9), dots; numerical simulation of Eq.
(1); parametersy=1, 6,=0,0.3,Q2=10. (b) Evolution of the order

parametef for u=0.4,y=1, §,=0, §;,=7,Q=10; initial condition,
i5,B Ising wall.

* . 5
C,—-20D=uC +(y+|50)C+T
1 |2 * 2
_4_1(80“:' +4CF2+ +-+) + Cyy,

* - i5A
D, +20C = uD +(y+|50)D—T1

1 = —
—Z(ZBZF +4BI’F+ ---)+D,. (6

Inspecting these equations one finds the following first-
order dependencies:

a = i 51Et + |/.L51E —i ’)’(le+ 5051E+ i 51|E‘2E_ i 51EXX!

by=—i&F, ¢ =-i6,AN4, dy=-&F/4.  (8)
Finally, Egs.(5)—(7) result in an amplitude equation for
the redefined, averaged fiefth (1+€2/2)V?F of the form
=_ 1= €2
TR YR

F* +(y+i8y)F = [F|F + Fyy

~u(1-&F +(y+is)F - [FF+Fy (9

O’ 40 Q°’
which lead to an ansatz of the form
a; a b, b, c, ©C
A:_+_y B=_+_! _+_1
0z o Q Q3 o 0°
d | dp
D= 62 + 9—4

Using this ansatz the unknown quantitiagh,c,d can be

determined as

where €= 5/ Q2.

Equation(9) shows that a rapidly oscillating detuning ef-
fectively decreases the parametric forcing of the averaged
field amplitude. For rather large oscillating perturbations the
parametric forcing may even vanish, causing a recovery of
the above-mentioned continuous phase symmetry. Moreover,
for a purely oscillating detuning,=0, 6; # 0 the nongradi-
ent GL Eq.(1) transforms into an averaged gradient equa-
tion. Thus, in this case there is no averaged net velocity of
Bloch walls. Figure (b) shows the evolution of an Ising wall
for such a situation beyond the Ising-Bloch bifurcation point.
The Ising wall destabilizes and transforms into a Bloch wall
without net velocity. In Fig. (a) we compare the threshold of
the Ising-Bloch bifurcation obtained by the averaged model
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[Eq. (9)] with the results of numerical simulations of the t
basic Eq.(1). A very good agreement is obtained even for #(t) :e-sz e s(t)dt’. (14)
rather large perturbations 0

Now, let us briefly discuss the influence of rapid oscilla- Looking for the solution of Eq(11) in the forma=a+ay,
tory perturbations of the linear gaip= y,+ y,Sin(Q2t) on the where(a)=a, (a;)=0, we arrive at the system of equations
Ising-Bloch transition. Similarly to the above procedure, an
averaged GL equation 8= (1(COS 2p) + y)a+ u(8,C0S 2p) + By~ & - 3a(a3),

Fi=uF +(yo+iOF - (1+2)|FPF+Fy  (10) (19

can be obtained. Here, oscillatory perturbations lead only to a;; = u(cos 2p — (cos 2p))a + u(a,cos 2p — (a;cos 2))
a decrease of the amplitude of both types of walls leaving the
bifurcation point of the Ising-Bloch transition unchanged.

It should be noted that the model of EQ) is a nongra-  aq can be inferred from Eq16) the variablea, is at least of
dient system, the dynamics of which can be analyzed byecqng order. Keeping only terms up to second order, we

means of other approaches, e.g., using the free energy gpa v get the closed equation for the averaged amplitude,
Lyapunov potentia[20]. The comparison of such methods

with the approach of the averaged GL equation requires A= [l - A¢?) + yla+a, - a. 17
separate considerations.

+ yay + g~ a; - 3a%ay + 3a(a] - (al)). (16)

Using Eq.(14) we find that
IIl. RANDOM MODULATIONS o2 . o2
i sacti : () =—(1-e™) — — (18)
In this section we study the influence of random param- 2u 2u
eter modulations on the Ising-Bloch transition. We restrict _ . .
ourselves to perturbations of the detuning paramétes(t), ~ holds. Thus the equation for the averaged amplitude coin-
which exhibit the property of white noisd(t)s(t’))  cides WItQ the unperturbed GL equation after replaqingy
=20258(t—t"), (8(t))=0. 8p(t) is the Dirac delta function and m(1-2¢?) = u—o?. In our case of 6)=0 the averaged GL

(-++ denotes the averaging procedure over all realizations ggduation is of gradient type whereas the original, stochastic
the random process. GL equation is non_gradlent. Similar to the previous section

the parametric forcing decreases for increasing strength of
) _ N the random perturbation of the detuning. It can even vanish,
A. Dynamics of the first moment and transition threshold producing an averaged GL equation without parametric

Here, the equation for the first moment of the order paforcing. If we apply the considerations in this section
rameterF is derived. By means of this averaged amplitudet0 harmonic perturbations(t) = 5;sin(t), we get ¢=(5,/
equation we study the influence of noise on the Ising-BlocH)[exp(—2ut) —cogQt)]— —(8:/Q)cog M) and thus
transition. First, we rewrite Ed1) in the form of two equa-
tions for the amplitudea and the phaseb of the complex <¢2>:< 5? >

order parameteF=ad?: (19

202
a =[u cod2¢) + y— pla+a,—a°, (11)  holds. Inserting this formula into above averaged Eky)
exactly the same resylEqg. (9)] as in the previous section is
_ o obtained. Even the change of the amplitude coincides if the
¢ =80 — uSin2e) + poct 2ha/a. (12) approximation (Fy=(a expli¢))~a(1—-(¢?) is used. The
The Ising solution[Eq. (2)] is purely real, i.e., the phase €ason for the decrease of the parametric forcing originates
vanishes,$=0. Therefore one may expect that under theffom the fact that the perturbed Ising wall exhibits a non-
influence of the time dependent perturbatift) the phase of ~ trivial phase dependence. Of course, this nonzero phase in-
the perturbed Ising wall solution depends only on the timdluences the phase sensitive term in the parametric GL equa-

variable too. In this case the equation for the phasms the 10N @s can be observed, e.g., in Efl). Thus, the effective
simple form parametric forcing becomes time dependent and it decreases

after averaging.
b= (1) — wsin2e). With regard to the_ threghold (_)f the Ising-Bloch bifurcgtion
the results of numerical simulations of the full stochastic GL
Small perturbations ins(t) (we neglect large fluctuations €equation(1) coincide very well with the those of the aver-
cause small values of the phase. Therefore we can approx@ged mode[Eq. (17)] [see Fig. 24)]. A typical evolution of

mately reduce Eq(12) to a linear one, the order parametdt with rather strongs noise is shown in
Figs. 2b) and Zc). An Ising wall destabilizes and transforms
d = 8(t) — 2udd, (13) into a Bloch wall. Even though such a Bloch wall exhibits no
averaged net velocity there is a kind of Brownian motion,
which has the following solution: which will be studied in the next subsection.
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0.55 @ ‘ gous noise model is considered by Becker and Kraf@gr
. for the GL equation, where the influence of multiplicative

0.5 — noise on the bifurcation process has been studied. Within
. such a model one still has Markovian processes for the noise.
0.45 — Therefore, the theory of Markov proceses can be applied.

The case of white noise in space and time is beyond the
applicability of our theory and has to be considered sepa-
rately.

B. Brownian motion of the Bloch wall

For temporal fluctuations af the Bloch wall will undergo
a random motion. In order to analyze the character of this
motion we derive the equation for the velocity of the Bloch
wall.

For 6~€<1 we can apply the singular perturbation
theory. For the order parametér the following ansatz is

used:
0 ing wal il F= FO(Z) + eul(zrt) + 62“2(21‘:) + - ’ (21)
50 100 ! where z=x—xg(t) holds andF; is the Bloch solution in a
T ! comoving frame with velocity(t). The actual positior, of
(©) 60 the Bloch wall is given by,=[tv(t,)dt;. The velocityo(t) is
40- assumed to obey the relation
><20 11 U(t):ﬂ)1+6202+"‘. (22)

| After substituting all these expansions into Ef). a system
50 100 of equations foiFy, Uy, U, is obtained. Excluding the secular
T terms in the first order we find the following expression for

FIG. 2. Transition of an Ising to a Bloch wall for randomly the first-order velocity,:
varying detunings= 8,(t), (5,(t) 8,(t")y=2028p(t-t’). (a) Threshold %
of the Ising-Bloch bifurcation as a function of the variancef the f dZ Yo(y) XoY) = Xo(Y) Yo(Y)]
random perturbation, line; averaged E&j7), dots; numerical simu- _ -
lation by means of Eq.1); parametery=1. (b) Surface plot of the v1=4(t) * '
evolution of the order parameterfor ©=0.35,y=1, 0=0.4; initial f dZ[XSZ(y) + Ygz(y)]

condition Ising wall.(c) Contour plot of the evolution of the order -
parametelr; same parameters as ().

00

(23

wherey= V“‘ZTLZ andX,, Yg denote the real and the imaginary

part of the unperturbed Bloch wall. If we take into account
Let us briefly discm_Jss the role of strong fluctuations. AS_the shape of the Bloch wdlEq. (3)] a simple relation for the

shown in the Appendix, the second moment for the phase igosition of the center of such a randomly perturbed domain

described by the expression wall can be deduced
o2 ! 3wy - 3u\u+
(A(D)) = ——(1 -+ 4utPy), (20) Xo=— A f Sitydy, A= YZSRIETY oy
2u 0 2V2u(3y - p)

which coincides with Eq(18) for 4ut< Pgl. Note, for an  For a constant detuning, this equation coincides with that

initial time interval 4ut<1 and not too small values d%, found in[7]. For a random detuning the mean square of the

we have the diffusion law for the phage? =Dt with the  Bloch wall displacementx) is given by

new diffusion coefficient 22(1+Pc) instead of 22 for ne- 0A=Dt D =28%2 (25)

glecting P.. This will explain the numerical observations of 0

increasing diffusion coefficients in the case of large fluctua-The mean square of the displacement of the domain wall

tions (see the numerical results for the diffusion of the do-increases linearly in time. Thus a Brownian motion of the

main wall in the next section domain wall occurs. The diffusion coefficient is proportional
Furthermore, the results of our investigations can be easo the so-called chirality?, wherey=1y-3u. Therefore the

ily extended to a more involved noise moa€x,t) with the  diffusion of the domain walls is slower close to the threshold

properties (e(x,1))=0, (e(x,t)e(y,t'))=D(x-y,l)&t-t'),  of the Ising-Bloch transition. For small values pfthe rela-

wherel, is the correlation length. In this case our results aretion D~ 1/ holds, i.e., in this case the diffusion is propor-

approximately valid after replacing? by D(0). An analo- tional to the square of the domain wall width.
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0.16 been confirmed by numerical simulations of the parametric
_ GL equation with periodic and random coefficients.
0.12 — ? APPENDIX
i In order to treat Eqs(11) and(12) analytically we apply
0 0.08 — ° the two following assumptions, where the validity was
7 checked numerically.
0.04 — ® (i) For a random, time dependent detuning parameter the

phase of the perturbed Ising wall depends on the time vari-
ablet only, or at least it is a slow function of the transverse

0 L variablex. Therefore, the termé, and ¢,, in Eq.(12) can be
0 0.05 0.1 0.15 omitted. The reduced equation exhibits the form
° b= 8(t) - psin(2¢p). (A1)

FIG. 3. Diffusion coefficient of the Brownian motion of a Bloch (||) For low intensity noise the phase is proportiona| to
wall as a function of the variance of the randomly varying detuningg(t) and has a small magnitude. Thus, EA1) can be lin-
8=81(t), (81 8y(t"))=202ap(t~t"). Solid line, theory; points, Nu-  earized. This assumption corresponds to the neglect of large
merical simulation by means of El); parametergy=1, u=0.25. noise fluctuations.

The influence of large fluctuations can be estimated in the

Figure 3 shows the diffusion coefficient of Bloch walls as following way. Let us define the time periods, =t —t,- as
a function of the variance of the stochasfiwzariations. The  such intervals(around random moments,t,. <t,<t.,, n
results of the numerical simulations of the full stochastic=1,2,3,...,N) in which &(t,) > &, occurs:&, is some critical
Ginzburg-Landau equation reasonably coincide with thesalue of the noise amplitude that is considered to be large
above theory for low values of the noise. For larger noisge.g., 5.= u). The value of the periodt, depends on a cor-
strengths there is only a qualitative agreemeete Appen- relation time and it tends to zero for white noise. For such
dix). Probably this is due to the generation of new states byime intervals Eq.(Al) approximately reduces ta(t,)
the strong noise. A similar threshold value for the noise in—= s(t,) leading to the following expression:
tensity has been observed in the sine-Gordon equation, )
where the generation of small amplitude breathers has been (¢?(tn)) = 20°At,. (A2)

observed21-23. Thus, the value of the second moment of the phase can be

written as[see Eq.(18)]
IV. CONCLUSION

02 N
In conclusion, we have studied the Ising-Bloch transition (PA(t)) = > 1-e %4 4,u2 At, ], tyst. (A3)
in systems described by the parametric Ginzburg-Landau H n=1

equation for periodically and randomly varying parametersrhg third term in the above parentheses describes the contri-
in time. For rapidly modulated detuning and linear gain, av-ysion of the large fluctuations and it can be rewritten as
eraged parametric GL equations have been derived. For '[en&-wﬁz(t))z 20%tP,, where P =3\ L8t/t. The parameteP,

. . . ) n= .
p(_)ral modulat!ons Of the_llnea_r detu_nlng the threshold of thedefines the relative time interval of large fluctuations, and for
Ising-Bloch bifurcation is shifted in dependence on thea large enough period of the tintét becomes a constant. In

strgngth of the perturbation. Temporal perturbations Of. debrder to estimaté®, we assume a Gaussian distributionéof
tuning may even cause a change of the type of the non"neaa{ccording to

system, i.e., initially nongradient systems may effectively be-

have like gradient ones. On the contrary, rapid periodic per- 1 &
turbations of the linear gain do not change the critical point P(&) = %ex%— g) (A4)
of the Ising-Bloch transition. This type of perturbation leads v 0 0
only to a decrease of the domain wall amplitudes. In this case the probability fof> &, is given by

For a white noise modulation of the detuning we studied w w0
the behavior of the first moment. In this case an averaged pC:f P(8)6= i_ e dx. (A5)
amplitude equation has been derived. Using this equation the 5 vV J sz2s,

shift of the bifurcation point was analyzed. Additionally, the : _ s
connection between a periodically and randomly varying deFOr €xample, forg=0.07 an%5c—0.3 we getP;~ 10 and
tuning parameter was examined. For randomly changing dd®" %=0-4 the valueP,~10" holds approximately. In the
tunings Bloch walls perform a Brownian motion. The diffu- case of ergodic processes the relatiye P results. Finally,
sion coefficient of this Brownian motion is derived for low the second moment of the phase reads as

amplitude noise. It is shown that the diffusion coefficient is o2

proportional to the square of the chirality parameter. Thus, (¢2(1) = 2—(1 —e ¥+ 4utPy), (AB)
slow diffusion can be observed close to the critical point of K

the Ising-Bloch transition. All analytical predictions have which coincides with Eq(18) for 4ut< Pgl.
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